SynchrotronKernel.jl
This package computes the synchrotron kernel for a frequency ratio $x = \frac{\nu}{\nu_0}$ and its polarisation components.
Simple interface
If you simply need to calculate the synchrotron kernel and the polarisation components you can use the following functions
Synchrotron Kernel
SynchrotronKernel.synchrotron_kernel
— Functionsynchrotron_kernel(x::Real)
Computes the first synchrotron function and the polarisation components at a given frequency ratio $x = \frac{\nu}{\nu_0}$. Returns a tuple (K_tot, K_ort, K_par)
.
K_tot = F(x)
K_ort = 0.5 * (F(x) + G(x))
K_par = 0.5 * (F(x) - G(x))
Synchrotron Functions
$F(x) = x \int_x^\infty K_{\frac{5}{3}}(t) dt$
$G(x) = x K_{\frac{2}{3}}(x)$
Intensity
SynchrotronKernel.synchrotron_intensity
— Functionsynchrotron_intensity(x::Real)
Computes the total synchrotron kernel, without polarisation components. Wrapper for F
.
$F(x) = x \int_x^\infty K_{\frac{5}{3}}(t) dt$
Polarisation
SynchrotronKernel.synchrotron_polarisation
— Functionsynchrotron_polarisation(x::Real)
Computes the second synchrotron function at a given frequency ratio $x = \frac{\nu}{\nu_0}$. Returns a tuple of (K_ort, K_par)
.
K_ort = 0.5 * (F(x) + G(x))
K_par = 0.5 * (F(x) - G(x))
Synchrotron Functions
$F(x) = x \int_x^\infty K_{\frac{5}{3}}(t) dt$
$G(x) = x K_{\frac{2}{3}}(x)$
Synchrotron Functions
If you need to access the individual synchrotron functions you can use the direct interface.
First Function
SynchrotronKernel.ℱ
— Functionℱ(x::Real)
Computes the first synchrotron function at a given frequency ratio $x = \frac{\nu}{\nu_0}$.
$F(x) = x \int_x^\infty K_{\frac{5}{3}}(t) dt$
Wrapper for F
.
SynchrotronKernel.F
— FunctionF(x::Real)
Computes the first synchrotron function at a given frequency ratio $x = \frac{\nu}{\nu_0}$.
$F(x) = x \int_x^\infty K_{\frac{5}{3}}(t) dt$
Second Function
SynchrotronKernel.𝒢
— Function𝒢(x::Real)
Computes the second synchrotron function at a given frequency ratio $x = \frac{\nu}{\nu_0}$.
$G(x) = x K_{\frac{2}{3}}(x)$
Wrapper for G
.
SynchrotronKernel.G
— FunctionG(x::Real)
Computes the second synchrotron function at a given frequency ratio $x = \frac{\nu}{\nu_0}$.
$G(x) = x K_{\frac{2}{3}}(x)$