API Reference
SPHKernels.AbstractSPHKernelSPHKernels.CubicSPHKernels.CubicSPHKernels.DoubleCosineSPHKernels.DoubleCosineSPHKernels.DoubleCosineSPHKernels.QuinticSPHKernels.QuinticSPHKernels.TophatSPHKernels.WendlandC2SPHKernels.WendlandC2SPHKernels.WendlandC4SPHKernels.WendlandC4SPHKernels.WendlandC6SPHKernels.WendlandC6SPHKernels.WendlandC8SPHKernels.WendlandC8SPHKernels.WendlandKernelSPHKernels.bias_correctionSPHKernels.bias_correctionSPHKernels.bias_correctionSPHKernels.bias_correctionSPHKernels.bias_correctionSPHKernels.bias_correctionSPHKernels.bias_correctionSPHKernels.bias_correctionSPHKernels.d𝒩SPHKernels.d𝒲SPHKernels.d𝒲SPHKernels.get_rSPHKernels.get_rSPHKernels.kernel_curlSPHKernels.kernel_curlSPHKernels.kernel_derivSPHKernels.kernel_derivSPHKernels.kernel_derivSPHKernels.kernel_derivSPHKernels.kernel_derivSPHKernels.kernel_derivSPHKernels.kernel_derivSPHKernels.kernel_derivSPHKernels.kernel_derivSPHKernels.kernel_derivSPHKernels.kernel_derivSPHKernels.kernel_derivSPHKernels.kernel_derivSPHKernels.kernel_deriv_normSPHKernels.kernel_divSPHKernels.kernel_divSPHKernels.kernel_gradientSPHKernels.kernel_gradientSPHKernels.kernel_gradientSPHKernels.kernel_normSPHKernels.kernel_normSPHKernels.kernel_normSPHKernels.kernel_normSPHKernels.kernel_quantitySPHKernels.kernel_quantitySPHKernels.kernel_quantitySPHKernels.kernel_valueSPHKernels.kernel_valueSPHKernels.kernel_valueSPHKernels.kernel_valueSPHKernels.kernel_valueSPHKernels.kernel_valueSPHKernels.kernel_valueSPHKernels.kernel_valueSPHKernels.kernel_valueSPHKernels.kernel_valueSPHKernels.kernel_valueSPHKernels.kernel_valueSPHKernels.kernel_valueSPHKernels.kernel_valueSPHKernels.kernel_valueSPHKernels.quantity_curlSPHKernels.quantity_curlSPHKernels.quantity_divergenceSPHKernels.quantity_divergenceSPHKernels.quantity_gradientSPHKernels.quantity_gradientSPHKernels.quantity_gradientSPHKernels.δρSPHKernels.∇dot𝒜SPHKernels.∇dot𝒜SPHKernels.∇dot𝒲SPHKernels.∇dot𝒲SPHKernels.∇x𝒜SPHKernels.∇x𝒜SPHKernels.∇x𝒲SPHKernels.∇x𝒲SPHKernels.∇𝒜SPHKernels.∇𝒜SPHKernels.∇𝒲SPHKernels.∇𝒲SPHKernels.∇𝒲SPHKernels.𝒜SPHKernels.𝒜SPHKernels.𝒜SPHKernels.𝒩SPHKernels.𝒲SPHKernels.𝒲SPHKernels.𝒲
Exported Types
SPHKernels.AbstractSPHKernel — TypeAbstractSPHKernelSupertype for all SPH kernels.
SPHKernels.Cubic — TypeCubic(T::DataType=Float64, dim::Integer=3)Set up a Cubic kernel for a given DataType T and dimensin dim.
SPHKernels.Cubic — MethodCubic(dim::Integer)Define Cubic kernel with dimension dim for the native DataType of the OS.
SPHKernels.DoubleCosine — TypeDoubleCosine(T::DataType=Float64, dim::Integer=3)Set up a DoubleCosine kernel for a given DataType T.
SPHKernels.DoubleCosine — Typestruct DoubleCosine{T} <: AbstractSPHKernel
dim::Int64
norm::T
endSPHKernels.DoubleCosine — MethodDoubleCosine(dim::Integer)Define DoubleCosine kernel with dimension dim for the native DataType of the OS.
SPHKernels.Quintic — TypeQuintic(T::DataType=Float64, dim::Integer=3)Set up a Quintic kernel for a given DataType T.
SPHKernels.Quintic — MethodQuintic(dim::Integer)Define Quintic kernel with dimension dim for the native DataType of the OS.
SPHKernels.Tophat — TypeTophat(dim::Integer)Define Tophat kernel with dimension dim for the native DataType of the OS.
SPHKernels.WendlandC2 — TypeWendlandC2(T::DataType=Float64, dim::Integer=3)Set up a WendlandC2 kernel for a given DataType T.
SPHKernels.WendlandC2 — MethodWendlandC2(dim::Integer)Define WendlandC2 kernel with dimension dim for the native DataType of the OS.
SPHKernels.WendlandC4 — TypeWendlandC4(T::DataType=Float64, dim::Integer=3)Set up a WendlandC4 kernel for a given DataType T.
SPHKernels.WendlandC4 — MethodWendlandC4(dim::Integer)Define WendlandC4 kernel with dimension dim for the native DataType of the OS.
SPHKernels.WendlandC6 — TypeWendlandC6(T::DataType=Float64, dim::Integer=3)Set up a WendlandC6 kernel for a given DataType T.
SPHKernels.WendlandC6 — MethodWendlandC6(dim::Integer)Define WendlandC6 kernel with dimension dim for the native DataType of the OS.
SPHKernels.WendlandC8 — TypeWendlandC8(T::DataType=Float64, dim::Integer=3)Set up a WendlandC8 kernel for a given DataType T.
SPHKernels.WendlandC8 — MethodWendlandC8(dim::Integer)Define WendlandC8 kernel with dimension dim for the native DataType of the OS.
Exported Functions
SPHKernels.bias_correction — Methodbias_correction( kernel::Cubic{T},
density::Real, m::Real, h_inv::Real,
n_neighbours::Integer ) where TDoes not do anything for the BSplines. Implemented for stability.
SPHKernels.bias_correction — Methodbias_correction( kernel::DoubleCosine{T},
density::Real, m::Real, h_inv::Real,
n_neighbours::Integer ) where TDoes not do anything for the DoubleCosine. Implemented for stability.
SPHKernels.bias_correction — Methodbias_correction( kernel::Quintic{T},
density::Real, m::Real, h_inv::Real,
n_neighbours::Integer ) where TDoes not do anything for the BSplines. Implemented for stability.
SPHKernels.bias_correction — Methodbias_correction(kernel::Tophat{T},
density::Real, m::Real, h_inv::Real,
n_neighbours::Integer) where {T}Corrects the density estimate for the kernel bias. Not implemented for Tophat.
SPHKernels.bias_correction — Methodbias_correction( kernel::Union{WendlandC2_1D{T}, WendlandC2{T}},
density::Real, m::Real, h_inv::Real,
n_neighbours::Integer ) where TCorrects the density estimate for the kernel bias. See Dehnen&Aly 2012, eq. 18+19.
SPHKernels.bias_correction — Methodbias_correction( kernel::Union{WendlandC4_1D{T}, WendlandC4{T}},
density::Real, m::Real, h_inv::Real,
n_neighbours::Int64 ) where TCorrects the density estimate for the kernel bias. See Dehnen&Aly 2012, eq. 18+19.
SPHKernels.bias_correction — Methodbias_correction( kernel::Union{WendlandC6_1D{T}, WendlandC6{T}},
density::Real, m::Real, h_inv::Real,
n_neighbours::Integer ) where TCorrects the density estimate for the kernel bias. See Dehnen&Aly 2012, eq. 18+19.
SPHKernels.bias_correction — Methodbias_correction(kernel::WendlandC8, density::Real, m::Real, h_inv::Real)Corrects the density estimate for the kernel bias. See Dehnen&Aly 2012, eq. 18+19.
SPHKernels.d𝒩 — Methodd𝒩(kernel::AbstractSPHKernel, h_inv::Real)Calculate the normalisation factor for the kernel derivative.
SPHKernels.d𝒲 — Methodd𝒲(kernel::AbstractSPHKernel, u::Real, h_inv::Real)Evaluate derivative at position $u = \frac{x}{h}$.
SPHKernels.d𝒲 — Methodd𝒲(kernel::AbstractSPHKernel, u::Real)Evaluate derivative at position $u = \frac{x}{h}$, without normalisation.
SPHKernels.kernel_curl — Methodkernel_curl(k::AbstractSPHKernel, h_inv::T1, xᵢ::T2, xⱼ::T2, Aⱼ::T2) where {T1,T2}Compute the kernel curl ∇x𝒲 between particle i and neighbour j for some SPH quantity A.
SPHKernels.kernel_deriv — Methodkernel_deriv(kernel::AbstractSPHKernel, u::Real, h_inv::Real) where TEvaluate the derivative of the kernel at position $u = \frac{x}{h}$.
SPHKernels.kernel_deriv — Methodkernel_deriv(kernel::Cubic{T}, u::Real) where TEvaluate the derivative of the Cubic spline at position $u = \frac{x}{h}$, without normalisation.
SPHKernels.kernel_deriv — Methodkernel_deriv(kernel::DoubleCosine, u::Real)Evaluate the derivative of the DoubleCosine spline at position $u = \frac{x}{h}$, without normalisation.
SPHKernels.kernel_deriv — Methodkernel_deriv(kernel::Quintic{T}, u::Real) where TEvaluate the derivative of the Quintic spline at position $u = \frac{x}{h}$, without normalisation.
SPHKernels.kernel_deriv — Methodkernel_deriv_1D(kernel::WendlandC2{T}, u::Real) where TEvaluate the derivative of the WendlandC2 spline at position $u = \frac{x}{h}$ without normalisation.
SPHKernels.kernel_deriv — Methodkernel_deriv(kernel::WendlandC4_1D{T}, u::Real) where TEvaluate the derivative of the WendlandC4 spline at position $u = \frac{x}{h}$ without normalisation.
SPHKernels.kernel_deriv — Methodkernel_deriv(kernel::WendlandC6_1D{T}, u::Real) where TEvaluate the derivative of the WendlandC6 spline at position $u = \frac{x}{h}$ without normalisation.
SPHKernels.kernel_deriv — Methodkernel_deriv(kernel::WendlandC8_1D{T}, u::Real, h_inv::Real) where TEvaluate the derivative of the WendlandC8 spline at position $u = \frac{x}{h}$.
SPHKernels.kernel_deriv — Methodkernel_deriv_1D(kernel::Tophat{T}, u::Real) where TEvaluate the derivative of the Tophat spline at position $u = \frac{x}{h}$, without normalisation.
SPHKernels.kernel_deriv — Methodkernel_deriv(kernel::WendlandC2{T}, u::Real) where TEvaluate the derivative of the WendlandC2 spline at position $u = \frac{x}{h}$ without normalisation.
SPHKernels.kernel_deriv — Methodkernel_deriv(kernel::WendlandC4{T}, u::Real) where TEvaluate the derivative of the WendlandC4 spline at position $u = \frac{x}{h}$ without normalisation.
SPHKernels.kernel_deriv — Methodkernel_deriv(kernel::WendlandC6, u::Real)Evaluate the derivative of the WendlandC6 spline at position $u = \frac{x}{h}$ without normalisation.
SPHKernels.kernel_deriv — Methodkernel_deriv_2D(kernel::WendlandC8{T}, u::Real) where TEvaluate the derivative of the WendlandC8 spline at position $u = \frac{x}{h}$, without normalisation.
SPHKernels.kernel_deriv_norm — Methodkernel_deriv_norm(kernel::AbstractSPHKernel, h_inv::Real)Calculate the normalisation factor for the kernel derivative.
SPHKernels.kernel_div — Methodkernel_div( k::AbstractSPHKernel, h_inv::T1,
xᵢ::T2, xⱼ::T2, Aⱼ::T2) where {T1,T2}Compute the kernel divergence ∇⋅𝒲 between particle i and neighbour j for some SPH quantity A.
SPHKernels.kernel_gradient — Methodkernel_gradient( k::AbstractSPHKernel, r::T1, h_inv::T1, Δx::T2) where {T1,T2}Computes the gradient of the kernel k at the distance r along the distance vector Δx of the neighbour j.
$∇W(x_{ij}, h_i) = \frac{dW}{dx}\vert_{x_j} \frac{Δx_{ij}}{||x_{ij}||} \frac{1}{h_i}$
SPHKernels.kernel_gradient — Methodkernel_gradient( k::AbstractSPHKernel, h_inv::Real, xᵢ::T, xⱼ::T ) where TComputes the gradient of the kernel k at the position of the neighbour xⱼ.
$∇W(x_{ij}, h_i) = \frac{dW}{dx}\vert_{x_j} \frac{Δx_{ij}}{||x_{ij}||} \frac{1}{h_i}$
SPHKernels.kernel_norm — Methodkernel_norm(kernel::AbstractSPHKernel, h_inv::Real) where {T}Calculate the normalisation factor for the kernel.
SPHKernels.kernel_norm — Methodkernel_norm(kernel::WendlandKernel, h_inv::Real) where {T}Calculate the normalisation factor for the WendlandC2 kernel.
SPHKernels.kernel_norm — Methodkernel_norm(kernel::Tophat, h_inv::Real) where {T}Calculate the normalisation factor for the Tophat kernel.
SPHKernels.kernel_norm — Methodkernel_norm(kernel::WendlandC2_1D{T}, h_inv::Real) where {T}Calculate the normalisation factor for the WendlandC2 kernel.
SPHKernels.kernel_quantity — Methodkernel_quantity(k::AbstractSPHKernel, r::T1, h_inv::T1,
Aⱼ::T2, mⱼ::T1, ρⱼ::T1 ) where {T1,T2}Compute the contribution of particle j to the SPH quantity A for particle i. Based on Euclidean distance r between the particles. Useful if many quantities need to be computed for the same particle pair.
$\vec{A}_i(x) ≈ \sum_j m_j \frac{\vec{A}_j}{\rho_j} W(\vec{x}_i - \vec{x}_j, h_i)$
SPHKernels.kernel_quantity — Methodkernel_quantity(k::AbstractSPHKernel, h_inv::T1,
xᵢ::T2, xⱼ::T2, Aⱼ::T2, mⱼ::T1, ρⱼ::T1 ) where {T1,T2}Compute the contribution of particle j to the SPH quantity A for particle i. Based on positions xᵢ and xⱼ.
$\vec{A}_i(x) ≈ \sum_j m_j \frac{\vec{A}_j}{\rho_j} W(\vec{x}_i - \vec{x}_j, h_i)$
SPHKernels.kernel_value — Methodkernel_value( k::AbstractSPHKernel, h_inv::Real,
xᵢ::Real, xⱼ::Real )Computes the value of the kernel k at the position of the neighbour xⱼ.
$W(x_i - x_j, h_i)$
SPHKernels.kernel_value — Methodkernel_value(kernel::AbstractSPHKernel, u::Real, h_inv::Real) where TEvaluate the kernel at position $u = \frac{x}{h}$.
SPHKernels.kernel_value — Methodkernel_value( k::AbstractSPHKernel, h_inv::T1,
xᵢ::T2, xⱼ::T2 ) where {T1,T2}Computes the value of the kernel k at the position of the neighbour xⱼ.
$W(\vec{x}_i - \vec{x}_j, h_i)$
SPHKernels.kernel_value — Methodkernel_value_1D(kernel::Cubic{T}, u::Real) where TEvaluate cubic spline at position $u = \frac{x}{h}$, without normalisation.
SPHKernels.kernel_value — Methodkernel_value(kernel::DoubleCosine, u::Real)Evaluate DoubleCosine spline at position $u = \frac{x}{h}$, without normalisation.
SPHKernels.kernel_value — Methodkernel_value(kernel::Quintic{T}, u::Real) where TEvaluate quintic spline at position $u = \frac{x}{h}$, without normalisation.
SPHKernels.kernel_value — Methodkernel_value(kernel::WendlandC2_1D{T}, u::Real) where TEvaluate WendlandC2 spline at position $u = \frac{x}{h}$ without normalisation.
SPHKernels.kernel_value — Methodkernel_value(kernel::WendlandC4{T}, u::Real) where TEvaluate WendlandC4 spline at position $u = \frac{x}{h}$ without normalisation.
SPHKernels.kernel_value — Methodkernel_value(kernel::WendlandC6_1D{T}, u::Real, h_inv::Real) where TEvaluate WendlandC6 spline at position $u = \frac{x}{h}$ without normalisation.
SPHKernels.kernel_value — Methodkernel_value(kernel::WendlandC8_1D{T}, u::Real) where TEvaluate WendlandC8 spline at position $u = \frac{x}{h}$, without normalisation.
SPHKernels.kernel_value — Methodkernel_value(kernel::Tophat{T}, u::Real) where TEvaluate Tophat spline at position $u = \frac{x}{h}$, without normalisation.
SPHKernels.kernel_value — Methodkernel_value(kernel::WendlandC2{T}, u::Real, h_inv::Real) where TEvaluate WendlandC2 spline at position $u = \frac{x}{h}$ without normalisation.
SPHKernels.kernel_value — Methodkernel_value(kernel::WendlandC4{T}, u::Real) where TEvaluate WendlandC4 spline at position $u = \frac{x}{h}$ without normalisation.
SPHKernels.kernel_value — Methodkernel_value(kernel::WendlandC6{T}, u::Real) where TEvaluate WendlandC6 spline at position $u = \frac{x}{h}$, without normalisation.
SPHKernels.kernel_value — Methodkernel_value(kernel::WendlandC8{T}, u::Real) where TEvaluate WendlandC8 spline at position $u = \frac{x}{h}$, without normalisation.
SPHKernels.quantity_curl — Methodquantity_curl(k::AbstractSPHKernel, h_inv::T1, xᵢ::T2, xⱼ::T2, Aⱼ::T2, mⱼ::T1, ρⱼ::T1 ) where {T1,T2}Compute the contribution of particle j to the curl of the SPH quantity A for particle i.
$∇×\vec{A}_i(x) ≈ - \sum_j \frac{m_j}{\rho_j} \vec{A}_j \times ∇W(\vec{x}_i - \vec{x}_j, h_i)$
SPHKernels.quantity_divergence — Methodquantity_divergence(k::AbstractSPHKernel, h_inv::T1, xᵢ::T2, xⱼ::T2, Aⱼ::T2, mⱼ::T1, ρⱼ::T1 ) where {T1,T2}Compute the contribution of particle j to the divergence of the SPH quantity A for particle i.
$∇\cdot\vec{A}_i(x) ≈ \sum_j \frac{m_j}{\rho_j} \vec{A}_j \cdot ∇W(\vec{x}_i - \vec{x}_j, h_i)$
SPHKernels.quantity_gradient — Methodquantity_gradient(k::AbstractSPHKernel,
r::T1, h_inv::T1,
Δx::T2, Aⱼ::T2,
mⱼ::T1, ρⱼ::T1) where {T1<:Real,T2}Compute the contribution of particle j to the gradient of the SPH quantity A for particle i. Based on Euclidean distance r and distance vector Δx between the particles. Useful if many quantities need to be computed for the same particle pair.
$∇\vec{A}_i(x) ≈ \sum_j \frac{m_j}{\rho_j} \vec{A}_j \: ∇W(||\vec{x}_i - \vec{x}_j||, h_i)$
SPHKernels.quantity_gradient — Methodquantity_gradient(k::AbstractSPHKernel, h_inv::T1,
xᵢ::T2, xⱼ::T2, Aⱼ::T2,
mⱼ::T1, ρⱼ::T1 ) where {T1<:Real, T2}Compute the contribution of particle j to the gradient of the SPH quantity A for particle i. Based on positions xᵢ and xⱼ.
$∇\vec{A}_i(x) ≈ \sum_j \frac{m_j}{\rho_j} \vec{A}_j \: ∇W(||\vec{x}_i - \vec{x}_j||, h_i)$
SPHKernels.δρ — Methodδρ₁(kernel::AbstractSPHKernel, density::Real, m::Real, h_inv::Real)Corrects the density estimate for the kernel bias. See Dehnen&Aly 2012, eq. 18+19.
SPHKernels.∇dot𝒜 — Method∇dot𝒜(k::AbstractSPHKernel, h_inv::T1, xᵢ::T2, xⱼ::T2, Aⱼ::T2, mⱼ::T1, ρⱼ::T1 ) where {T1,T2}Compute the contribution of particle j to the divergence of the SPH quantity A for particle i. Compact notation of quantity_divergence.
$∇\cdot\vec{A}_i(x) ≈ \sum_j \frac{m_j}{\rho_j} \vec{A}_j \cdot ∇W(\vec{x}_i - \vec{x}_j, h_i)$
SPHKernels.∇dot𝒲 — Method∇dot𝒲( k::AbstractSPHKernel, h_inv::T1, xᵢ::T2, xⱼ::T2, Aⱼ::T2) where {T1,T2}Compute the kernel divergence ∇⋅𝒲 between particle i and neighbour j for some SPH quantity A. Compact notation of kernel_div.
SPHKernels.∇x𝒜 — Method∇x𝒜(k::AbstractSPHKernel, h_inv::T1, xᵢ::T2, xⱼ::T2, Aⱼ::T2, mⱼ::T1, ρⱼ::T1 ) where {T1,T2}Compute the contribution of particle j to the curl of the SPH quantity A for particle i.
$∇×\vec{A}_i(x) ≈ - \sum_j \frac{m_j}{\rho_j} \vec{A}_j \times ∇W(\vec{x}_i - \vec{x}_j, h_i)$
SPHKernels.∇x𝒲 — Method∇x𝒲(k::AbstractSPHKernel, h_inv::T1, xᵢ::T2, xⱼ::T2, Aⱼ::T2) where {T1,T2}Compute the kernel curl ∇x𝒲 between particle i and neighbour j for some SPH quantity A.
SPHKernels.∇𝒜 — Method∇𝒜( k::AbstractSPHKernel, h_inv, xᵢ, xⱼ, Aⱼ, mⱼ, ρⱼ)Compute the contribution of particle j to the gradient of the SPH quantity A for particle i. Compact notation of quantity_gradient.
$∇\vec{A}_i(x) ≈ \sum_j \frac{m_j}{\rho_j} \vec{A}_j \: ∇W(||\vec{x}_i - \vec{x}_j||, h_i)$
SPHKernels.∇𝒲 — Method∇𝒲( k::AbstractSPHKernel, h_inv::Real, xᵢ::Union{Real, Vector{<:Real}}, xⱼ::Union{Real, Vector{<:Real}} )Computes the gradient of the kernel k at the position of the neighbour j. Based on Euclidean distance r and distance vector Δx between the particles. Useful if many quantities need to be computed for the same particle pair. Compact notation of kernel_gradient.
$∇W(x_{ij}, h_i) = \frac{dW}{dx}\vert_{x_j} \frac{Δx_{ij}}{||x_{ij}||} \frac{1}{h_i}$
SPHKernels.∇𝒲 — Method∇𝒲( k::AbstractSPHKernel, h_inv::T1, xᵢ::T2, xⱼ::T2 ) where {T1<:Real,T2}Computes the gradient of the kernel k at the position of the neighbour xⱼ. Compact notation of kernel_gradient.
$∇W(x_{ij}, h_i) = \frac{dW}{dx}\vert_{x_j} \frac{Δx_{ij}}{||x_{ij}||} \frac{1}{h_i}$
SPHKernels.𝒜 — Method𝒜(k::AbstractSPHKernel, r::T1, h_inv::T1, Aⱼ::T2, mⱼ::T1, ρⱼ::T1 ) where {T1,T2}Compute the contribution of particle j to the SPH quantity A for particle i. Based on Euclidean distance r between the particles. Useful if many quantities need to be computed for the same particle pair.
$\vec{A}_i(x) ≈ \sum_j m_j \frac{\vec{A}_j}{\rho_j} W(r, h_i)$
SPHKernels.𝒜 — Method𝒜(k::AbstractSPHKernel, h_inv::T1,
xᵢ::Union{T1, T2}, xⱼ::Union{T1, T2},
Aⱼ::Union{T1, T2}, mⱼ::T1, ρⱼ::T1 ) where {T1,T2}Compute the contribution of particle j to the SPH quantity A for particle i. Based on positions xᵢ and xⱼ.
$\vec{A}_i(x) ≈ \sum_j m_j \frac{\vec{A}_j}{\rho_j} W(\vec{x}_i - \vec{x}_j, h_i)$
SPHKernels.𝒩 — Method𝒩(kernel::AbstractSPHKernel, h_inv::Real)Calculate the normalisation factor for the kernel.
SPHKernels.𝒲 — Method𝒲( k::AbstractSPHKernel, h_inv, xᵢ, xⱼ)Computes the value of the kernel k at the position of the neighbour xⱼ.
$W(\vec{x}_i - \vec{x}_j, h_i)$
SPHKernels.𝒲 — Method𝒲( kernel::AbstractSPHKernel, u::Real, h_inv::Real)Evaluate kernel at position $u = \frac{x}{h}$.
SPHKernels.𝒲 — Method𝒲( kernel::AbstractSPHKernel, u::Real)Evaluate kernel at position $u = \frac{x}{h}$, without normalisation.
Private Functions
SPHKernels.get_r — Methodget_r(xᵢ::Real, xⱼ::Real)Eukledian distance between xᵢ and xⱼ.
SPHKernels.get_r — Methodget_r(xᵢ::Vector{<:Real}, xⱼ::Vector{<:Real})Eukledian distance between xᵢ and xⱼ.
Private Types
SPHKernels.WendlandKernel — TypeWendlandKernelSupertype for Wendland kernels.